Exercise Sheet #3

Course Instructor: Ethan Ackelsberg Teaching Assistant: Felipe Hernández

P1. (Problem 3.3.)(Borel–Cantelli lemma) If $(A_n)_{n\in\mathbb{N}}$ is a family of measurable subsets of a probability space (X,\mathcal{B},μ) and $\sum_{n\in\mathbb{N}}\mu(A_n)<\infty$, then

$$\mu(\{x \in X \mid x \in A_n \text{ for infinitely many } n \in \mathbb{N}\}) = 0.$$

P2. Let (X, \mathcal{F}, μ) be a measure space and f a measurable function. Prove the Markov-Chebyshev inequality:

$$\forall \alpha > 0, \mu(|f| > \alpha) \le \frac{1}{\alpha} \int_{|f| > \alpha} |f| \, d\mu \le \frac{1}{\alpha} \int |f| \, d\mu.$$

P3. Let (X, \mathcal{F}_X, μ) and (Y, \mathcal{F}_Y, ν) be probability spaces, and let $T: X \to Y$ be a measurable function. Define $T\mu(A) := \mu(T^{-1}(A))$ for each $A \in \mathcal{F}_Y$. Prove that $\nu = T\mu$ if and only if for all integrable function f:

$$\int_Y f \, d\nu = \int_X f \circ T \, d\mu.$$

- **P4.** (Problem 3.2.) Let (X, \mathcal{B}, μ) be a probability space. Let $(A_n)_{n \in \mathbb{N}}$ be a family of measurable sets with $a = \inf_{n \in \mathbb{N}} \mu(A_n) > 0$. We aim to show that there is a set $E \subseteq \mathbb{N}$ such that $\bar{d}(E) := \limsup_{N \to \infty} \frac{|E \cap \{1, \dots, N\}|}{N} \ge a$, and for any finite set $F \subseteq E, F \ne \emptyset$, one has $\mu\left(\bigcap_{n \in F} A_n\right) > 0$.
 - (a) Justify that we can assume, without loss of generality, that $\bigcap_{n\in F} A_n \neq \emptyset$ if and only if $\mu\left(\bigcap_{n\in F} A_n\right) > 0$. To do this, it may help to define the countable set

$$\mathcal{F} = \{ F \subseteq \mathbb{N} \mid |F| < \infty, \bigcap_{n \in F} A_n \neq \emptyset, \mu \left(\bigcap_{n \in F} A_n \right) = 0 \}.$$

- **(b)** Prove that $\int \limsup_{N\to\infty} \frac{1}{N} \sum_{n=1}^N \mathbf{1}_{A_n}(x) d\mu(x) \ge a$.
- (c) Define $E = \{n \in \mathbb{N} \mid x \in A_n\}$ for some suitable $x \in X$. Conclude the proof.